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Cognitive flexibility depends on a fast neural learning mechanism
for enhancing momentary relevant over irrelevant information. A
possible neural mechanism realizing this enhancement uses fast
spiking interneurons (FSIs) in the striatum to train striatal projec-
tion neurons to gate relevant and suppress distracting cortical
inputs. We found support for such a mechanism in nonhuman
primates during the flexible adjustment of visual attention in a
reversal learning task. FSI activity was modulated by visual atten-
tion cues during feature-based learning. One FSI subpopulation
showed stronger activation during learning, while another FSI
subpopulation showed response suppression after learning, which
could indicate a disinhibitory effect on the local circuit. Addition-
ally, FSIs that showed response suppression to learned attention
cues were activated by salient distractor events, suggesting they
contribute to suppressing bottom-up distraction. These findings
suggest that striatal fast spiking interneurons play an important
role when cues are learned that redirect attention away from pre-
viously relevant to newly relevant visual information. This cue-
specific activity was independent of motor-related activity and
thus tracked specifically the learning of reward predictive visual
features.

cognitive flexibility | reversal learning | reinforcement learning |
confidence | caudate nucleus

Adaptive behavior depends on neural mechanisms that en-
hance the processing of momentary relevant information

and disengage from processing irrelevant information. Both
these adaptive processes are believed to depend on the anterior
striatum (1–3). One reason for this alleged role of the striatum to
adjust behavior flexibly is its rich and diverse input from brain
areas that represent the current behavioral goals, the values of
recently experienced outcomes, and the reward value of available
objects in the environment (4, 5). These inputs carry the infor-
mation needed to decide whether ongoing cognitive routines are
aligned to the current goal or whether they need to be adjusted.
These diverse types of information are integrated in the striatum
where neurons are observed that activate preferably to those
inputs that are momentarily reward relevant (1, 4). This increase
in activity to only a selected subset of the available visual in-
formation can be described as the gating of cortico-striatal in-
puts. How such a facilitation of inputs is achieved and what types
of representations are supported by such a selective striatal ac-
tivation are two fundamental questions that need to be solved to
understand the neural basis of cognitive flexibility. Here, we
address both of these questions.
Previous studies suggest that the synaptic integration of inputs

in the striatum depends critically on fast spiking interneurons
(FSIs) (6, 7). FSIs receive prominent inputs from cortical sources
and impose feedforward inhibition on large ensembles of spiny
projection neurons (SPNs) (8–11). This FSI-mediated inhibition
has therefore been implicated to control how glutamatergic in-
puts from prefrontal cortices are gated to SPNs (12, 13). Recent
in vivo evidence in rodent striatum supports this view by sug-
gesting that the activation of SPNs to prefrontal inputs is modified
by inhibition from FSIs during learning (12, 14, 15). According to

these insights it is possible that cognitive flexibility is supported by
selective FSI-mediated inhibition during the flexible adjustment of
behavior. This scenario predicts that FSI-mediated inhibition
should be particularly strong during flexible cognitive adjustment
in order to either prevent activation of SPNs that responded to
previously relevant cues or to facilitate via disinhibition the acti-
vation of SPNs that respond to newly relevant cues. The conse-
quence of such an inhibitory influence during learning would thus
be the formation of a new assembly of cells becoming active after,
as compared to before, learning (16).
Which type of information is processed in striatal cell assem-

blies? A hallmark of cognitive flexibility is that it operates on
cognitive information independent of immediate motor require-
ments. Support for striatal processing of such “cognitive events”
(4) comes from nonhuman primate studies about the efficient
learning of values of unique objects in the anterior striatum
(17–24). Striatal neurons fire stronger when objects appear at
recently rewarded locations (18, 24, 25), and when attention is
directed to the rewarded and away from nonrewarded stimuli (26).
These activity changes indicate that striatal circuits might gate
visual inputs for making choices (1, 23). Consistent with this view,
electrical stimulation of primate anterior striatum can alter
choices to stimuli that are associated with reward and that are part
of specific stimulus-response mappings (25, 27–29), complement-
ing optogenetic stimulation-induced changes in choice behavior
reported in rodents (30–32). The stimulation-induced changes in
choice behavior can be specific to visual objects irrespective of
object locations or motor plans used to choose among objects (25).
Taken together, these studies suggest that neural circuits in the
striatum can operate on specific visual cues, opening the possibility
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that cue-triggered striatal routing is learned quickly in support of
cognitive flexibility.
Here, we address these open questions about the learning of

striatal gating by recording from striatal neurons in nonhuman
primates during a feature-based reversal learning task. We first
set out to establish a cell classification protocol that identifies
FSIs in the striatum of nonhuman primates and distinguishes
them from other local interneurons and from SPNs. We then
quantified how the striatal cell types change their firing during
reversal learning in response to visual cues that either instruct
subjects to covertly shift attention or to overtly plan a saccadic
eye movement. We found that two distinct FSI cell types can be
reliably distinguished by their electrophysiological profiles. Both
FSI cell types responded preferentially to the attention cue and
both showed the strongest firing rate correlations with successful
reversal learning compared to SPNs and other interneurons.
These findings suggest that striatal FSIs play a role in learning
the reward predicting value of visual cues that redirect attention
away from previously relevant to newly relevant visual information.

Results
We used a color-based reversal paradigm that required subjects
to learn the reward value of colors assigned to two stimuli. The
color value remained constant for blocks of at least 30 trials
before uncued reversals (Fig. 1A). Each trial involved the step-
wise addition of informative features, serving as cues, to two
initially identical gabor patches. During each trial the onset of
color served as the attention color cue for shifting covert at-
tention to the stimulus with the rewarded color, while an action
motion cue was shown before or after the attention cue to as-
sociate a saccade direction (up- or downward) with the selection
of each stimulus (Fig. 1B). After both cues were shown, the
animals had to detect a go-signal (a transient dimming) in the
stimulus with the rewarded color to make a saccade for obtaining
the reward. A transient dimming occurred in one-third of the
trials in the stimulus with the nonrewarded color prior to a
dimming of stimulus with the rewarded stimulus, in which case it
needed to be ignored (SI Appendix). The transient dimming of
the nonrewarded stimulus thus reflected a no-go event because it
instructed to inhibit responding. Monkeys learned the newly
rewarded target object in each reversal block within 11 (SE: 2)
trials showing learning curves that separated a learning period
from a learned period with asymptotic probability for making
rewarded choices (Fig. 1C). The reversal learning performance
was well accounted for by a model-free reinforcement learning
model augmented with a mechanism that enhances the speed of
adjusting reward values for attended over nonattended (non-
chosen) stimuli (23, 33) (SI Appendix).

Firing Patterns and Synchronization Distinguishes Fast Spiking
Interneurons. While animals performed reversal learning, we
recorded from 350 neurons in the anterior striatum of two mon-
keys (164/186 in monkeys K/H, Fig. 1D). Neurons fell into three
separate action potential classes showing broad spikes (B, 83%
[292 of 350]), medium spikes (M, 8% [28 of 350]), and narrow
spikes (N, 9% [30 of 350]) (Fig. 2A) (three-Gaussian model, P <
0.01, SI Appendix, Fig. S1 A–C). This tripartite split is similar to
prior studies in rodent striatum showing that SPNs and FSIs have
broad and narrow spikes, respectively (34–36). FSIs and SPNs are
also distinguished by how bursty and regular their firing is (6),
which we quantified using their spiketrains’ local variability (LV)
(37) and global variability (coefficient of variation [CV]) (SI Ap-
pendix, Fig. S1 D and E). We combined these firing parameters
with the action potential parameters (rise and decay times) for
improving the separation of FSIs using cluster analysis. We found
that firing patterns and action potentials explained 93.9% of the
dataset variance and distinguished two narrow spiking cell classes
(N1 and N2), four broad spiking cell classes (B1 to B4), and a class

with medium action potential width (M1) (Fig. 2 B and C and SI
Appendix, Fig. S1 F and G). The classes were composed of 29, 8,
and 18 cells for N1, N2, and M1 cells, and 67, 62, 76, and 90, for
B1 to B4 cells, respectively. Inspection of the spike rasters (Fig.
2C) and spike parameters suggested apparent mappings of these
cell classes to classes defined using molecular tools and mor-
phology variables. N2 and M1 fulfill criteria of FSIs by showing
high firing rates and repetitive interspike intervals (LVs signifi-
cantly smaller than 1, random permutation test, P < 0.01, SI Ap-
pendix, Fig. S1H). Low firing rates and narrow spikes associate the
N1 class with cells that might include inhibitory low threshold
spiking cells (LTS). The broad spiking classes B1 to B4 are likely
dominated by SPNs, while among these B classes, B1 and B4 will
likely include subsets of cholinergic interneurons and neuroglia-
form cells (see Discussion).
In addition to class-specific firing patterns, cell classes showed

unique oscillatory sidelobes in spike-triggered local field poten-
tial (LFP) averages that indicated they synchronized differently
to local striatal field potentials (SI Appendix, Fig. S2). Across the
whole cell population, we found that cells synchronized signifi-
cantly to either theta (4.5 ± 3 Hz), beta (16 ± 8 Hz), or gamma
(38 ± 10 Hz) frequencies as evident in three peaks of a peak
density histogram calculated across all spike-LFP pairs (Fig. 2D).
The FSI classes (N2 and M1) showed a peak density indexing
gamma band synchronization, but no beta frequency synchrony
peaks, while the SPN-associated classes B2 to B4 showed syn-
chronization peak densities in the beta frequency band (Fig. 2E).
Classes B1 and B2 were broad spiking classes with a gamma peak
similar to the narrow spiking cells. Using support vector machine
classification, we could predict significantly more likely than
chance the class label of cells from the cells’ strength of spike-LFP
synchronization (SI Appendix, Fig. S2C). This finding showed that
putative SPN classes showed class-specific beta band synchrony,
while putative FSI classes M1 and N2 showed gamma synchrony
consistent with evidence from the rodent striatum (34, 38, 39).

Fast Spiking Interneuron Responses to Attention and Action Cues.
Distinguishing FSIs (M1 and N2) from SPN-dominated cell
classes allowed us to test how these classes responded to the
attention cue onset. We found in multiple examples that striatal
neurons responded strongly to the onset of the attention color
cue, regardless of whether it appeared before or after the action
(motion) cue during a trial (Fig. 3A, for more examples, see SI
Appendix, Fig. S3). Across the population, a majority of striatal
neurons showed maximal firing rate modulations in the 0.4 s
after attention cue onset (Fig. 3B), while response modulations to
the action motion cue were rarer and less pronounced (Fig. 3C).
This attention cue-specific responding varied between cell classes.
One FSI class (N2, n = 8 cells included in this analysis) showed a
significant, fast, and transient on-response to the attention cue
(Fig. 3D, P < 0.05 increase from 0 to 0.1 s after cue onset, random
permutation test), that was not evident for the action cue (Fig. 3E).
When N2 cells ceased firing, cells of the B2 (n = 25 cells), B4 (n =
10 cells), and N1 (n = 7 cells) classes began to show increased firing
to the attention cue (P < 0.05), but not to the action cue (Fig. 3D).
In contrast to these firing increases, fast spiking M1 interneurons
(n = 13 cells) reduced their firing to the attention cue (Fig. 3D, P <
0.05 decrease from 0.2 s after cue onset onwards, random per-
mutation test). Direct comparison of attention cue versus action
cue onset responses confirmed that N1, N2, M1, B2, and B4
showed stronger modulations to the attention cue than the action
cue onset (Fig. 3E). These cell-specific attention cue responses
were seen irrespective of whether the rewarded stimulus was ipsi-
or contralateral to the recorded hemisphere (Fig. 3F).

Fast Spiking Interneuron Cue Responses Change with Reversal
Learning. We next tested how the attention cue responses var-
ied with the reversal learning of color values. We estimated the
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learning progress as the increased probability of subjects to make
rewarded choices, which we refer to as the learning status (LS)
(Fig. 1C) and used as learning criterion the trial when the lower
confidence bound of the probability surpassed the chance level
(40, 41). First, we found that the average firing prior to reaching
the learning criterion tended to be larger for most cell classes for
the attention cue epoch but not the action cue epoch (SI Ap-
pendix, Fig. S4 A and B). To quantify this effect, we correlated
for each cell the postcue firing rates with the LS. Neurons with
significant LS × rate correlations show rate modulations that
vary with improved color-reward learning. Such a correlation is
shown in an example cell in Fig. 4A that gradually reduced firing
as the animal learned the new color rule. Across the striatum we
found that the narrow spiking neurons (M1, N1, and N2) com-
pared to broad spiking neurons (B1 to B4) were more likely to
show significant LS × rate correlations (38% vs. 22%, P < 0.01,
χ2 test), showed stronger absolute average correlations with
learning (r = 0.19 vs. r = 0.09, P < 0.001, bootstrap randomiza-
tion test), and showed on average significantly negative corre-
lations (r = −0.10 vs. r = 0.00, P < 0.001, bootstrap randomization
test) (SI Appendix, Fig. S4C). Narrow spiking cells (M1, N1, and
N2) were more likely to fire stronger early during learning or were
suppressed after learning had occurred (stronger firing early
during learning: seven cells; suppressed firing after learning: eight
cells). Among these narrow spiking classes, it was particularly the
fast spiking neuron classes M1 and N2 that showed significantly
stronger and on average negative correlations of their firing rate

with learning status compared to other classes (M1: r = −0.12, n =
10; N1: r = −0.05, n = 5; N2: r = −0.17, n = 7; B1: r = 0, n = 31;
B2: r = 0.03, n = 24; B3: r = 0.01, n = 3; B4: r = 0.05, n = 8)
(Fig. 4D). Neurons of the M1 and N2 classes were the only classes
that showed on average negative correlations of their firing rate
with learning status, indicating strongest cue-triggered activity
during learning (class N2), or reduced cue-triggered activity after
learning (class M1) (Fig. 4D).
The correlation results so far were between firing rates and an

ideal observer estimate of the probability of rewarded choices
during reversal learning that can be interpreted as quantifying
how confident a subject is that a specific color leads to reward
(40). Concomitant to increased confidence about which color is
relevant, reversal learning is also accompanied by increases in
choice probability and expected = value for the relevant stimulus
(Fig. 4B), raising the question as to which of these learning
variables best correlate with neural firing. We estimated choice
probability (CP) and the expected stimulus value (EV) with a
reinforcement learning model (SI Appendix) and performed
partial correlations of firing rates with learning status, CP, and
EV for narrow and broad spiking cells (cells in the analysis:
narrow = 21, and broad = 65). We found that the ideal observer-
estimated confidence was significantly more likely correlated
with the firing of narrow than broad spiking neurons (48%, n =
10, of narrow and 14%, n = 9, for broad spiking neurons), and
was on average significantly negatively correlated with the firing
of narrow spiking neurons (r = −0.07 for narrow and r = 0.003 for

B

A C D

Fig. 1. Task paradigm. (A) The animals performed a color-based attentional learning task requiring learning to attend to the stimulus with the rewarded
color and make a saccade in the direction of the motion of that stimulus. The color cue for attention and the motion cue for (saccadic) action varied in-
dependently from one another. Learning which color is rewarded proceeded in blocks of 30 trials before uncued color-reward reversals could happen. (B)
During a trial, animals fixated the center dot and were shown the attention color cue or the action motion cue first. After 0.5 to 0.9 s the remaining cue was
shown. Each stimulus could then transiently dim. The dimming was either in the target stimulus first, the distractor stimulus first, or in both stimuli simul-
taneously. The animal could make a saccade in the 0.05 to 0.55 s after dimming to receive feedback (reward or no reward). Since only one stimulus was
rewarded per trial a dimming event was either a go cue to make a saccadic eye movement when it occurred in the rewarded stimulus, or it was a no-go cue for
withholding a movement when it occurred in the nonrewarded stimulus. (C) Both monkeys learned the color-reversal task reaching ∼85% plateau perfor-
mance (Left). We estimated the learning status of the animals with an ideal observer statistic as probability to observe rewarded choice (Right). (D) Recording
locations in the anterior striatum for monkeys H and K.
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broad spiking neurons) (Fig. 4C). In contrast, CP and EV were
equally likely significantly correlated with the firing of narrow or
broad spiking neurons (narrow/broad spiking neuron percent-
ages with significant correlations of rate and CP: 23/18%; for
rate and EV: 19/23%). These findings quantify that striatal FSI
firing to the attention cue is more closely correlated with an
internal state of confidence about the behaviorally relevant color

feature, than with the value or the actual choice probability of
a stimulus.

Neural Responses to Go Cues and No-Go Cues. The firing changes to
the attention cue could reflect the facilitation of processing the
rewarded target stimulus or the suppression of the nonrewarded
distracting stimulus. To disentangle these scenarios, we compared

D

E

BA

C

Fig. 2. Distinguishing striatal interneurons and projection neurons. (A) Normalized, average action potentials (APs) of striatal cells, color coded into 85%
broad (B), 6% intermediate narrow (M), and 9% narrow (N) spiking neurons. These three AP classes are distinguished by their initial slope to valley decay
(ISVD) and their hyperpolarization rate (HR) (SI Appendix, Fig. S1 A–C). (B) Dendogram showing the seven cell classes distinguishable with unsupervised
k-means clustering taking into account the cell’s ISVD, HR index, firing rate, local variability (LV), and coefficient of variation (CV). The clustering identifies
four B classes (blue), two N classes (red), and one M class (orange) (SI Appendix, Fig. S1 D–G). (C) Example rasters, average AP waveforms, and distribution of
LVs for each cell class. Three neuron classes showed highly regular interspike interval distributions (N2, M, and B1), B3 showed high burst firing propensity,
and the other three classes (N1, B2, and B4) showed low firing rates and variable CVs (SI Appendix, Fig, S1H). (D) Peak normalized spike-to-local field potential
(LFP) synchronization for all cells (y axis) across frequencies (x axis). Synchrony peaks across cells occurred around 4.5-Hz (theta), 16-Hz (low beta), and 38-Hz
(gamma). White dots indicate significant (P < 0.05) synchrony peaks. (E) Density of significant synchrony peaks shows that theta and beta synchrony was more
likely in broad spiking cell classes, while gamma band synchrony was apparent for narrow spiking classes N1, N2, and M1, as well as for broad spiking classes
B1 and B2 (SI Appendix, Fig. S2).
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the responses of neurons to the transient dimming events that
occurred in the rewarded target stimulus (go event, instructing a
saccadic choice), and in the nonrewarded distractor stimulus (no-go
event, instructing to ignore the event). We found that neurons in
five of seven cell classes (N2, M1, B1, B2, and B4) showed on av-
erage significant response modulations to the go event (for four
example cells and the Z-normalized average response, see SI Ap-
pendix, Fig. S5 A and B). However, we likewise found that three cell
classes (M1, B3, and B4) on average significantly increased activity

to the no-go distractor event, indicating that subsets of cells in-
creased their firing to a salient distractor event that needed to be
suppressed (SI Appendix, Fig. S5C). These findings show that both
facilitation of processing the relevant cues and suppressing the
processing of salient distractors are represented in cell-class-specific
firing increases. Statistically, the responses to the attended stimulus
that indicate facilitation of its processing were stronger than the
responses to the distracting events in the nonattended stimulus that
indicate suppressing its influence on behavior (SI Appendix, Fig.

A B C

D

E F

Fig. 3. Cell-class-specific firing rate changes to the attention color cue onset. (A) Three example cells with spike rasters around onset of the first cue (Left) and
second cue (Right). The cells changed firing selectively when the attention color cue was onset either as first cue in the trial (purple), or as second cue (green).
They showed no, or less, modulation to the action cue onset. Examples are from classes B2, N1, and M1. (B) Striatal cells (y axis) responded to the attention cue
onset (0s on x axis) as shown by normalizing firing to the maximal or minimal firing around the time of attention cue onset. (C) There were fewer neurons
responding to the action cue onset compared to B. (D) Z-normalized, average firing (thickened line denotes significance at P < 0.05) around the attention
color cue onset (Left) shows that classes N1, N2, B2, and B4 showed periods with significant firing increase to the attention cue, while class M1 shows on
average suppressed firing. There was markedly lower average modulation to the action cue (Right). Only N1 and B4 had brief periods of significantly sup-
pressed action cue firing. (E) The difference of firing to the attention color cue versus action cue across cell classes. Thick lines indicate significance (P < 0.05,
randomization test). (F) Z-normalized firing rate around color cue onset for correctly performed trials with the rewarded (target) color in the ipsilateral (Left)
or the contralateral (Right) visual hemifield.
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S5D). These response modulations to the go and no-go events
changed with behavioral learning progress for classes M1 and B4
(Pearson correlations, P < 0.01, multiple comparison corrected, SI
Appendix, Fig. S5E). For class M1 the firing rate changes to the go
and no-go responses correlated on a trial-by-trial basis with the
firing rate changes to the attention color cue (Dunn’s test, P < 0.05).
These findings indicate that the FSIs of the M1 class facilitate the
processing of events not only when they directed covert attention
(to the color onset), but also when they trigger an overt (saccadic)
choice behavior (to the go event).

Spike-LFP Synchronization and LFP Power Change with Reversal
Learning. So far, we have shown that the fast spiking neuron
classes increased firing during learning (N2) or reduced firing

after learning (M1). These changes could be accompanied by
changes in synchronization within the local circuit. We tested this
for neurons that showed sufficient (≥40 spikes) spike activity in
the 0.5 s following the attention cue onset by quantifying their
spike-LFP phase synchronization. We found that fast spiking
neurons (classes N2 and M1) did not alter their gamma band
synchrony with learning, but showed on average increased 25- to
35-Hz beta band spike-LFP synchronization after learning was
complete and performance reached asymptote (increased pair-
wise phase consistency in the beta band: 0.009 [SE 0.003]; P <
0.05) (Fig. 5A; for two examples, see SI Appendix, Fig. S6A). In
contrast, broad spiking neurons (classes B1 to B4) showed on
average significantly larger spike-LFP synchronization in a 45- to
55-Hz gamma band during learning than after learning, but no

A B D

C

E

Fig. 4. Attention cue onset responses change with behavioral learning. (A) Example cell shows gradually reduced firing (red axis, Left) with increased
probability of rewarded choices (learning status, black axis). Spike raster (Middle) and firing rate heat map (Right) illustrate that this cell shows negative rate x
learning correlations (r = −0.49, P < 0.01). (B) Expected (Q) value of the rewarded color for trials since color-reward reversal as estimated by a feature-based
reinforcement learning model. (C) Partial correlations of learning status (Left), choice probability (Middle), and expected value of the rewarded color (Right)
for broad and narrow spiking cell classes. Panels show the proportion of significant correlations (Upper row) and the average correlation (Lower row). (D)
Absolute (Upper) and signed (Lower) correlations of learning status (probability of rewarded choices) and Z-normalized firing rates in the attention cue epoch
across cell classes. Gray shaded area denotes correlation range expected irrespective of cell class label (randomization test). Color panels (Bottom) show
average learning x rate correlations for classes B2, M1, and N2. (E) Proposed interpretation of main results. N2 FSIs (red) are active during the reversal (Left)
which could indicate inhibition of SPN ensembles encoding the previously relevant, now irrelevant feature (Middle). M1 FSIs (orange) are suppressed after
learning, which could reflect reduced inhibition of those SPN cells that encode the currently relevant target feature (Right). Each feature-selective ensemble
contains direct (green) and indirect (blue) pathway SPNs that cooperate to trigger facilitation (go) for that feature and a suppression (no-go) of
competing features.
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changes in synchrony in the beta band (increased pairwise phase
consistency in the gamma band: −0.025 [SE 0.013]; P < 0.05)
(Fig. 5A; for two examples see SI Appendix, Fig. S6A). These
changes of the spike-LFP relationship were not a mere reflection
of changes of LFP power (SI Appendix, Fig. S6B). LFP at re-
cording sites with narrow spiking neurons showed significantly
larger 15- to 25-Hz beta band power during learning and after
learning showed significantly enhanced 35- to 40-Hz gamma
band power (n = 24 LFP sites, P < 0.05 randomization test). LFP
at recording sites with broad spiking neurons showed signifi-
cantly increased theta band LFP power but no changes in beta
and gamma bands (n = 173 LFP sites, P < 0.05 randomization
test) (Fig. 5B).

Discussion
We found that striatal cells with a fast spiking firing pattern,
narrow action potentials, and preferential synchrony to gamma
band frequencies 1) responded stronger to attention cues than
action cues and 2) negatively correlated with learning the reward
prediction conveyed by attention cues. The correlations of neural
cue responses and the behavioral learning progress of these fast
spiking interneurons distinguished them from other cell types.
Narrow spiking cells of the class N1 that were unlikely fast
spiking cells increased firing to the attention cue but showed no
consistent learning correlations. The four distinguishable classes
of broad spiking cells were more heterogeneous in their cue
responses and learning correlations. Across all cell types, the
attention cue responses were more likely reflecting the facilita-
tion of the attended target than the suppression of a nonattended
distractor because the same cell types that responded to the cue
also responded to the onset of the go event in the target stimuli.
We found, however, three cell types that were on average
responding to the salient no-go event (the transient dimming) of
the distractor stimulus which suggests that their increased firing
rate could reflect the suppression of processing distracting events.
Finally, we found reversal learning did not alter the cell-class-
specific gamma synchrony of fast spiking neurons or the beta
synchrony of broad spiking neurons. Rather, gamma synchronous
fast spiking neurons showed a increase in beta synchrony after
learning, while beta synchronous broad spiking cell classes showed
gamma synchrony during the period of reversal learning.
Taken together, these results show that there are two sub-

classes of striatal fast spiking neurons whose activity to an at-
tention cue changes when the reward association of the attention

cue is learned following reward reversals. One FSI class (N2) was
particularly active during learning, signifying stronger inhibition
during learning, while another FSI class (M1) became inactive
after learning, signifying postlearning disinhibition of connected
cells. These findings suggest that fast spiking interneurons in
nonhuman primate striatum play a role in attention and learning
processes that indexes cognitive flexibility.

Fast Spiking Interneuron Types Show Functional Specializations. Our
key result is based on distinguishing two separate FSI classes (N2
and M1) that both contained neurons with repetitive firing pattern
(low local variability), relatively high baseline firing rates, low
global variability (coefficient of variation), and gamma rhythmic
activity in vivo (34, 35, 42, 43). One FSI class (N2) showed the
narrowest waveforms, while cells of theM1 class showed a rise and
decay of their action potentials that was in between the narrow
and the large broad spiking class. These unique spike dynamics
indicate different underlying channel kinetics, suggesting these cell
classes have different genetic fingerprints. A distinction of two
subtypes of FSIs has recently been reported in rodent striatum
when characterizing their morphology (35, 44) and when evaluating
their activity profiles (36, 45). The finer-grained distinction of two
FSI subtypes is not commonly reported in the literature, which
might be because the distinct FSI subtypes both express parvalbu-
min (PV) (46) and might therefore be subsumed as PV+ neurons
without reporting further their action potential profiles (47).
Here, we found that two FSI cell types (N2 and M1) have not

only different waveforms but show on average opposite func-
tional firing characteristics. N2 neurons showed enhanced short,
transient onset responses to the attention cue that were stronger
during as compared to after learning (Figs. 3 and 4). In contrast,
M1 cells showed decreased firing following cue onset that was
more pronounced after subjects reached plateau performance
(Fig. 4E). These differences suggest that N2 and M1 neurons
play different roles in the local striatal circuit. Current anatom-
ical insights into the specific roles of different FSIs are sparse (9,
48), but a recent study documented in mice and monkey striatum
that two molecularly distinct FSI subtypes show different con-
nectivity to SPNs linked to the direct and indirect pathway (46).
One FSI subtype connects more strongly to SPN neurons whose
activity is linked to the direct pathway that realizes a facilitation
of cortical inputs and has been called the “go pathway” (3). We
hypothesize that this FSI neuron subtype corresponds to the N2
class whose activity during learning might indicate the active
inhibition of direct pathway SPNs that would otherwise facilitate
the processing of the previously relevant target stimulus and thus
needs to be inhibited during the reversal (Fig. 4 E, Middle). A
possible mechanism for the enhanced FSI-mediated inhibition of
SPNs during learning could be cortical input-induced short-term
facilitation on FSIs (49) to enhance cortico-striatal feedforward
inhibition onto those SPNs that should be prevented from
responding to the previously relevant stimulus during the re-
versal learning (8, 13, 44).
We found that the other (M1) FSI class was suppressed below

its baseline firing after learning of the new target feature oc-
curred (Fig. 4 E, Left) and activated to the salient no-go event of
the distractor stimulus with the irrelevant feature (SI Appendix,
Fig. S5). We hypothesize that this FSI subtype will have con-
nectivity for releasing inhibition of ensembles of SPNs encoding
the newly relevant feature (Fig. 4 E, Right). Mechanistically, the
reduced firing of M1 FSIs might not depend on cortical inputs.
Rather the reduced firing of neurons in the M1 class might be
mediated by thalamic-striatal inputs which have been reported to
inhibit striatal FSIs (50) as well as to induce short-term de-
pression on FSIs (49). The source of this thalamic inhibition of
FSIs has been found in the thalamic reticular nucleus (50) whose
neurons are known to activate during attention shifts (51) and
whose integrity is necessary for attentional orienting (52). The

A B

Fig. 5. Spike-LFP synchronization and LFP power change with behavioral
learning. (A) Difference of spike-LFP synchronization (measured as pairwise
phase consistency) after the learning criterion was reached versus before
reaching criterion. Horizontal bars indicate significance at P < 0.05. Fast
spiking interneurons (red) show increased 30-Hz synchrony after learning,
while broad spiking neurons show decreased 40-Hz synchrony after learning.
(B) Z-normalized LFP power from trials after versus before the learning cri-
terion was reached. LFP channels were sorted into those with fast spiking
interneuron activity (red) or broad spiking neuron activity (blue). Spike-LFP
synchrony and power was calculated in a 500-ms window after the attention
cue onset.
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striatal FSIs receiving this attention-charged input are thus
expected to be inhibited when attention cues direct covert at-
tention to a reward-associated location. Consistent with this
scenario, the M1 FSI class could thus be the target for these
thalamic inputs and hence support attention shifts to learned
features through disinhibition of SPNs.
Taken together, the differential activation dynamics of the two

FSI subclasses with learning suggests that the reversal learning of
attention cues involves two stages that are mediated by func-
tionally specialized striatal FSI circuits. We illustrate this hypo-
thetical model in Fig. 4E. It assumes that in a first stage, one
subtype of FSIs (containing N2 cells) is activated to inhibit SPNs
encoding previously relevant target features and thereby sup-
press the now irrelevant inputs. In a second stage, a separate FSI
subtype (containing M1 cells) receives thalamic inhibitory inputs
that release those SPN ensembles from inhibition that encode
the now relevant target features. The proposed two-stage process
of adjusting attention sets during learning is constrained largely
by rodent connectivity studies (with one exception) (46). The
rodent cell types and cell-type-specific connectivities are likely
only partly preserved in nonhuman primates (53). In light of this
limitation, we believe that the two-stage hypothesis of cell-type-
specific learning of attention provides important predictions for
future studies dissecting the neural circuits underlying the
learning of attention cues (23, 54, 55).

Beyond FSIs: Contributions of Spiny Projection Neurons, Low
Threshold Interneurons, and Cholinergic Interneurons to the Learning
of Attention. Our electrophysiological characterization of cell
classes in the primate striatum did not only reveal two distinct
classes of fast spiking interneurons but also five other distin-
guishable cell classes. One class was not fast spiking but had
narrow action potential shapes (class N1), and four cell classes had
broad action potentials (classes B1 to B4). Prior rodent studies
have shown that broad and nonfast spiking striatal neurons are
involved in reward learning and stimulus selection (3, 56), making
it pivotal to discuss their putative involvement in our study. The
nonfast spiking cell classes (N1 and B1 to B4) showed more het-
erogeneous response profiles to attention cues and correlations
with learning compared to the FSI classes, suggesting that our
electrophysiological classification and task paradigm is not suffi-
cient to infer their circuit functions. These cell classes will en-
compass to different degrees SPNs, LTS interneurons, and
cholinergic interneurons (CINs) as defined largely in rodents
based on their unique morphology, protein expression, and in vitro
physiology (6, 57). We believe there is evidence that links SPNs to
neurons in classes B2 to B4, LTS interneurons to neurons in class
N1, and CINs to neurons in B1. In particular, SPNs that constitute
∼90% of striatal cells will be represented by neurons in classes B2
to B4 because of their broad waveforms, their spontaneous, ir-
regular bursty firing patterns (58), and their beta band spike-LFP
synchrony. The cell class specificity of beta band synchrony is
consistent with prior studies that document how beta band syn-
chrony among the SPN neural population can reflect how biased
competition of cortical inputs to SPNs is resolved in favor of the
more behaviorally relevant among competing inputs (59, 60). The
only broad spiking cell class that did not show beta synchrony was
cell class B1, whose tonic (and low) firing (lowest global and local
variability, SI Appendix, Fig. S1H) suggest they encompass CINs
(36, 61, 62). Subgroups of CINs have been shown to increase
responding with reward learning (63), with CIN activation im-
posing a gain on reward learning (3), but their response patterns
are heterogeneous and task-state dependent (64). This variability
might explain why the B1 class did not show consistent functional
correlations with learning in our task and suggests that under-
standing their circuit functions might require the use of more than
one task paradigm. A similar conclusion applies to the class of
inhibitory LTS cells, which are also tonically active neurons

(TANs), but which have narrower action potential waveforms,
brief hyperpolarization, variable (regular to bursty) tonic firing (6,
35, 65), and low-frequency 3-7 Hz membrane oscillations (66).
These characteristics of LTS neurons resemble neurons of our N1
class. This class showed strong attention cue responses, and ap-
parent learning correlations consistent with a recent rodent study
(56), but their overall correlational pattern was more variable than
those of FSIs. We believe that narrowing down their circuit
function will be possible with our electrophysiological profiling of
cell classes, but will depend on a denser sampling of cells across
the striatum (67).

The Anterior Striatum and Biasing of Selective Attention to Visual
Features. Our study found that fast spiking interneurons, as
well as neurons from three other classes modulated their activity
stronger to the onset of a visual attention cue (the coloring of the
two stimuli) than to visual cues carrying motor information (the
motion direction of the stimuli) or to transient visual events that
directly triggered an overt choice (the dimming of stimuli that
served as a potential go-signal). This finding suggests that neu-
rons in the anterior striatum play a role in covertly shifting at-
tention. Consistent with such a role in attention, recent studies
have shown that neural activity in the striatum indicates sus-
tained covert spatial attention (26), the learning of feature-based
attentional top-down control (23), and the covert selection of
visual stimuli based on their expected value (25). The response
modulations in these studies could reflect that neurons encode
the expected reward value of specific visual features, or they
might be more directly related to the actual choice probability
with which one stimulus is chosen over another stimulus. We
quantified these different possibilities by estimating the expected
value and the choice probability of the chosen stimuli using an
established reinforcement learning model (23, 33, 41, 68, 69). On
average 18 to 23% of striatal neurons were significantly corre-
lated with the expected value of the target stimulus, as well as
with the choice probability of the chosen stimulus feature (Fig.
4C). This finding provides empirical support for an involvement
of the striatum in both, valuation and a “covert choice” of
attended visual features. However, the fast spiking interneuron
population that varied their firing with the learning progress of
the animals showed the strongest partial correlations not with
stimulus values or choice probabilities, but with the subjects’
confidence about the reward value of stimuli. This finding sug-
gests that these neurons are not signaling the attention shift directly
but indirectly as a decision variable that biases visual attention to
prioritize processing one stimulus over another (70). It will be an
important future task to characterize the specific information
conveyed by striatal cell classes when attention is deployed during
and after learning the value of stimulus features.
Taken together, the observed findings are an important step

for understanding how subclasses of striatal cells contribute to
flexibly reconfigure attentional priorities during learning and
how reinforcement learning mechanisms shape the expression of
learned attention (70, 71).

Materials and Methods
Electrophysiological recordings weremade and anatomically reconstructed in
two male rhesus macaques (Macaca mulatta) from the head of the caudate
and the ventral striatum as described previously (23) (SI Appendix). For each
single isolated neuron, we extracted the average action potential, mean
firing rate (FR), Fano factor (FF, variance over mean of the spike count in
consecutive time windows of 100 ms), the CV (SD over mean of the interspike
intervals, as well as the LV) which is proportional to the square of the differ-
ence of two consecutive interspike intervals (37) (SI Appendix). We tested
whether neurons fell into separate groups according to their action potential
dynamics and firing statistics using a data driven k-means clustering technique
and statistical approach as outlined previously (72) (SI Appendix).

To characterize the behavioral reversal learning status of the animals, we
used an ideal observer statistic that determined the trial during a block when
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the monkey showed consistent above-chance choices of the rewarded color
as developed (40) and applied previously (41, 68) (SI Appendix). We esti-
mated the choice probability and expected value of color for each trial
relative to the reward reversal by cross-validating an attention-augmented
reinforcement learning model that we previously validated against other
models (23, 41, 68) (SI Appendix).

For spike-LFP analysis, we preprocessed the wideband data with the
adaptive spike removal (ASR) method to remove spike bleed through arti-
facts as described in ref. 73 and calculated the pairwise phase consistency
(PPC) with subsequent permutation testing to estimate significant spike-LFP
synchronization (74) (SI Appendix).

Data and Code Availability. All data supporting this study and its findings, as
well as custom MATLAB code generated for analyses, are available from the
corresponding author upon reasonable request.
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